AP Calculus AB

Unit 2 – Limits and Continuity

There are no great limits to growth because there are no limits of human intelligence, imagination, and wonder. – Ronald Reagan

Answer the following questions.

Answe	r the following questions.		
1	For the function $f(x) = 5x^2$, as the x-value gets closer and closer to 3, $f(x)$ gets closer and closer to what		
P	value?		
2	For the function $f(x) = \frac{x^2 - 4}{x - 2}$, as the <i>x</i> -value gets closer and closer to 2, $f(x)$ gets closer and closer to what value?		
3	For the function $f(x) = e^{x} + 1$, as the <i>x</i> -value gets closer and closer to 0, $f(x)$ gets closer and closer to what value?		
4	The graph of $f(x)$ is given below, use the graph to answer the following questions.		
	a) $\lim_{x \to 4^-} f(x)$ b) $\lim_{x \to 4^+} f(x)$ c) $\lim_{x \to 4} f(x)$ d) $f(4)$		
	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $ e) $\lim_{x \to 1^{+}} f(x)$ f) $\lim_{x \to 1^{+}} f(x)$ g) $\lim_{x \to 1} f(x)$ h) $f(1)$		
5	Use the graph of $f(x)$ to estimate the limits and value of the function, or explain why the limit does not exist.		
	a) $\lim_{x \to 4^-} f(x)$ b) $\lim_{x \to 4^+} f(x)$ c) $\lim_{x \to 4} f(x)$ d) $f(4)$		
	e) $\lim_{x \to 2^-} f(x)$ f) $\lim_{x \to 2^+} f(x)$ g) $\lim_{x \to 2} f(x)$ e) $f(2)$		
6	Answer each statement as either True or False. a) If $f(x) = f(x)$ exists		
	a) If $f(1) = 5$, then $\lim_{x \to 1} f(x)$ exists.		
	b) If $f(1) = 5$ and $\lim_{x \to 1} f(x)$ exists, then $\lim_{x \to 1} f(x) = 5$.		
	c) If $\lim_{x \to 1} f(x) = 5$, then $f(1) = 5$.		
L			

7			
	Use the graph of $f(x)$ above to an	A Y 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	Talse
	a) $\lim_{x\to 0} f(x)$ exists	b) $\lim_{x \to 0} f(x) = 1$	c) $\lim_{x \to 0} f(x) = 0$
	d) $\lim_{x \to 1} f(x) = 2$	e) $\lim_{x \to 1} f(x) = -1$	f) $\lim_{x \to c} f(x)$ exists for every point <i>c</i> in (-3,1).
	g) $\lim_{x \to 1} f(x)$ does not exist	h) $f(0) = 0$	i) $f(0) = 1$
	j) $f(1) = -1$	k) $f(1) = 2$	1) $\lim_{x \to 2} f(x)$ exists
8	Simplify $\frac{x^2 + 7x + 12}{x^2 - 16}$		

Let *b* and *c* be real numbers, let *n* be a positive integer, and let *f* and *g* be functions with the following limits:

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M.$$

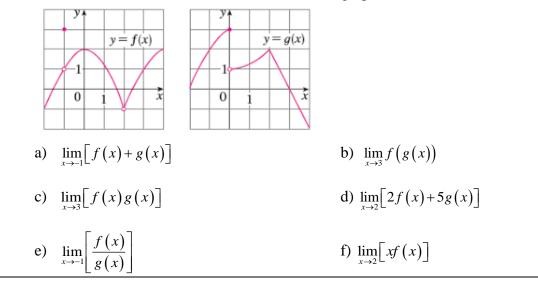
$$- \lim_{x \to c} k = k \quad - \lim_{x \to c} x = c \quad - \lim_{x \to c} \left[f(x) \pm g(x) \right] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) = L \pm M$$

$$- \lim_{x \to c} \left[f(x) \cdot g(x) \right] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M \quad - \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M}; \quad M \neq 0$$

$$- \lim_{x \to c} \left[bf(x) \right] = bL \quad - \lim_{x \to 0} \sqrt[n]{f(x)} = \sqrt[n]{L} \quad - \lim_{x \to 0} \left[f(x) \right]^n = L^n$$

1) Suppose
$$\lim_{x \to c} f(x) = 5$$
, $\lim_{x \to c} g(x) = -2$, and $\lim_{x \to c} h(x) = 9$, find
a) $\lim_{x \to c} \left[f(x)g(x) \right]$ b) $\lim_{x \to c} \left[f(x) - g(x) \right]$
c) $\lim_{x \to c} \sqrt{h(x)}$ d) $\lim_{x \to c} \left[\frac{g(x) + 1}{x} \right]$
e) $\lim_{x \to c} \left[2h(x) - 3g(x) \right]$ f) $\lim_{x \to c} \left[\frac{f(x)}{h(x)} \right]$
g) $\lim_{x \to c} \left[\frac{g(x)}{f(x)} \right]$ h) $\lim_{x \to c} \left[g(x) \right]^2$

2) The graphs of f and g are given below. Use the graphs to evaluate each limit.



3) S	uppose that $\lim_{x \to 7} f(x) = 0$ and $\lim_{x \to 7} g(x) = 5$. Definition	eteri	nine the following limits.
a) $\lim_{x\to 7} \left(g(x) + 5 \right)$	b)	$\lim_{x\to 7} xf(x)$
c)	$\lim_{x\to 7}g^2(x)$	d)	$\lim_{x \to 7} \left[\frac{g(x)}{f(x) - 1} \right]$

Once we accept our limits, we go beyond them. - Albert Einstein

Evaluate the limit.

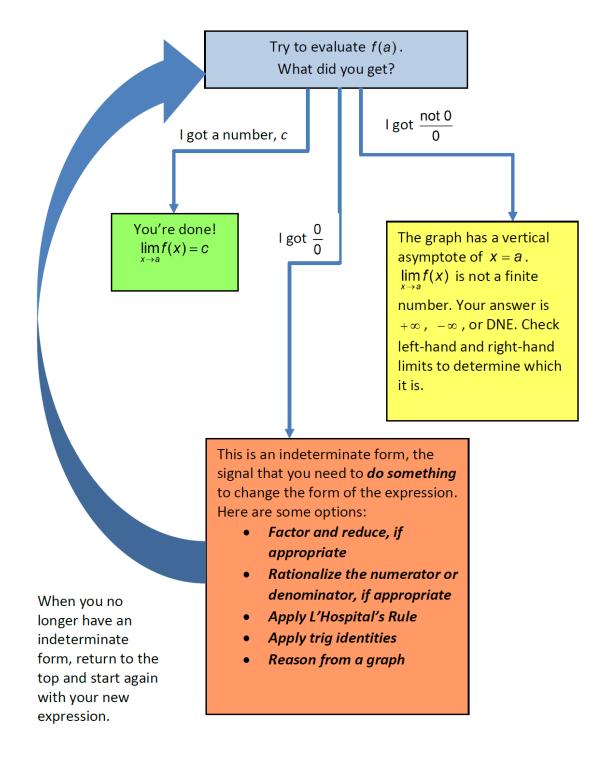
1	$\lim_{x \to -3} (3x+2)$
2	$\lim_{x \to 1} (3x^3 - 2x^2 + 4)$
3	$\lim_{x \to 3} \frac{\sqrt{x-1}}{x-4}$
4	$\lim_{x \to 2} \cos \frac{\pi x}{3}$
5	$\lim_{x\to 1} \sin \frac{\pi x}{2}$
6	$\lim_{x \to 0} \sec 2x$
7	$\lim_{x \to 3} \frac{x^2 - 9}{x + 3}$ $\lim_{x \to 0} \frac{3x^2 - 2x + 1}{x}$
8	$\lim_{x \to 0} \frac{3x^2 - 2x + 1}{x}$
9	$ \frac{1}{x \to 0} \frac{x}{1} = \frac{5x^2 + 6x + 10}{8x - 1} $
10	$\lim_{x \to 0} \frac{2 + 5x + \sin x}{5\cos x}$
11	For the following piecewise function $f(x) = \begin{cases} 5-x, & x < 3\\ \frac{3x}{4}+1, & x > 3 \end{cases}$, evaluate $\lim_{x \to 3} f(x)$.
	For the following piecewise function: $f(x) = \begin{cases} x+1, & x<2\\ x^2-1, & 2, evaluate:$
	12) a) $\lim_{x \to 2^{-}} f(x)$ b) $\lim_{x \to 2^{+}} f(x)$ c) $\lim_{x \to 2} f(x)$ d) $f(2)$
	13) a) $\lim_{x \to 4^-} f(x)$ b) $\lim_{x \to 4^+} f(x)$ c) $\lim_{x \to 4} f(x)$ d) $f(4)$

Limit Strategy Flowchart

The following flowchart can help you pick a strategy for evaluating limits of the form $\lim f(x)$,

where f(x) is a rational expression.

Study the flowchart, making sure you understand it. In your textbook, turn to exercises asking you to evaluate a variety of limit expressions, and practice applying the flowchart.



Evaluate each limit

1) $\lim_{x \to 1} (12x^3 + x^2 - 1)$	$2) \lim_{x \to 5} \frac{x+1}{x+2}$		3) $\lim_{x \to 4} \frac{x^2 + 5x + 4}{x + 2}$
$4) \lim_{x \to 0} \frac{x^2 - 2x}{x}$	$5) \lim_{x \to 4} \frac{4-x}{2-\sqrt{x}}$		6) $\lim_{x \to \frac{\pi}{4}} \left(\sin^2 x + \cos^2 x \right)$
7) $\lim_{x \to -1} \frac{2x^2 - x - 3}{x + 1}$	$8) \lim_{x \to 3} \frac{\sqrt{x+13} - x}{x-3}$	4_	9) $\lim_{x \to -3} \frac{2x+1}{x+3}$
10) $\lim_{x \to -8} \frac{y^2 + 9y + 8}{y^2 - 64}$	11) $\lim_{x \to 10} \frac{x^2 - 100}{x - 10}$		12) $\lim_{h \to 0} \frac{(9+h)^2 - 81}{h}$
13) $\lim_{x \to 1} f(x)$ for $f(x) = \begin{cases} 2x+1, & x < 1 \\ x-3, & x \ge 1 \end{cases}$		14) Suppose $\lim_{x \to 3} f(x) = -5$ and $\lim_{x \to 3} g(x) = 2$, evaluate $\lim_{x \to 3} 4 \left[f(x) - 2g(x) \right]$	
15) Suppose $f(x) = \begin{cases} x^2 - ax, & x \le 2\\ 3x + 6, & x > 2 \end{cases}$, find the value <i>a</i> that guarantees that $\lim_{x \to 2} f(x)$ exists.			
16) Suppose $f(x) = \begin{cases} x^2 - 4x, & x < -1 \\ ax^3 - 2, & x > -1 \end{cases}$, find the value <i>a</i> that guarantees that $\lim_{x \to -1} f(x)$ exists.			
17) If $\lim_{x \to 7} \frac{f(x) + 9}{x - 7} = 5$, find $\lim_{x \to 7} f(x)$.			
18) If $\lim_{x \to 4} \frac{f(x) - 7}{x - 4} = 6$, find $\lim_{x \to 7} f(x)$.			

Limits – The Difference Quotient/The Squeeze Theorem

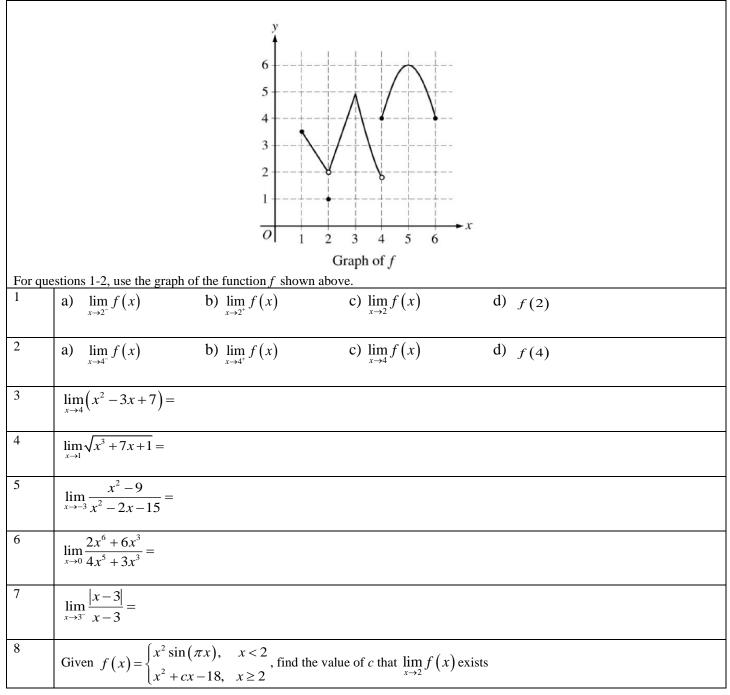
The only limits to the possibilities in your life tomorrow are the "buts" you use today. - Les Brown

For #1-4, find $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.	
1. f(x) = 2x + 3	2. $f(x) = x^2 - 4x$
$3. f(x) = \frac{4}{x}$	$4. f(x) = \sqrt{x}$

Use the graph of $f(x)$ shown below to answer 5-7. The domain of $f(x)$ is $(-\infty,\infty)$.		
$5 \xrightarrow{y}{6}$	$5. \lim_{x \to 2} f(x)$	
4	$6. \lim_{x \to -3} f(x)$	
$\begin{array}{c c} & & & & \\ \hline & & & \\ -2 & & 2 & 4 \end{array}$	7. Identify the values of <i>c</i> for which $\lim_{x\to c} f(x)$ exists. (Hint: think interval)	

Find the limit, if it exists.	
8. $\lim_{x \to 1} \frac{x^2 + 3x + 2}{x - 1}$	9. $\lim_{x \to 5} \frac{x-5}{x+1}$
10. $\lim_{x \to 2} \frac{x-3}{x^2 - 25}$	11. $\lim_{x \to \frac{\pi}{6}} (\sin^2 x)$

12	If $1 \le f(x) \le x^2 + 2x + 2$ for all x , find $\lim_{x \to -1} f(x)$. Justify.
13	If $-3\cos(\pi x) \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$. Justify
14	If $2-x^2 \le g(x) \le 2\cos x$ for all x , find $\lim_{x\to 0} g(x)$.
15	If $\lim_{x \to 4} \frac{f(x) - 5}{x - 2} = 1$, find $\lim_{x \to 4} f(x)$.



Limits at Infinity

Evaluate each limit

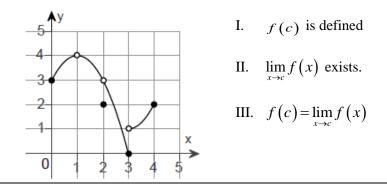
1) $\lim_{x \to \infty} \left(-5x^3 - 7x^2 + 1 \right)$	$2) \lim_{x \to -\infty} \left(5x^3 - 7x^2 + 1 \right)$	3) $\lim_{x \to \infty} \left(8 + \frac{9}{x^2} \right)$	4) $\lim_{x \to \infty} \frac{2 + 6x + 9x^2}{x^2}$
$5) \lim_{x \to \infty} \frac{9x+8}{9x+7}$	$6) \lim_{x \to -\infty} \frac{9x+8}{9x+7}$	7) $\lim_{x \to \infty} \frac{\sqrt{2x^2 - 4}}{x + 3}$	8) $\lim_{x \to \infty} \frac{\sqrt{x^2 - 4}}{x + 3}$
9) $\lim_{x\to\infty}\frac{x^3}{e^{3x}}$	$10) \lim_{x\to\infty}\frac{x^3}{e^{3x}}$	11) $\lim_{x \to \infty} \frac{\sin 3x}{15x}$	12) $\lim_{x \to \infty} \frac{7 - 6x + \sin 2x}{6x + \cos 2x}$
13) For which of the follow	Ving does $\lim_{x \to \infty} f(x) = 0$?	14) Determine the horizont the following.	al asymptote(s) of each of
I. $f(x) = \frac{\ln x}{x^{99}}$		a) $y = \frac{20x^2 - x}{1 + 4x^2}$ b) $f(x) = \frac{(3x+8)(5-4x)}{(3x+8)(5-4x)}$	4 <i>x</i>)
II. $f(x) = \frac{e^x}{\ln x}$		b) $f(x) = \frac{(3x+8)(5-4)(2x+1)^2}{(2x+1)^2}$ c) $g(x) = \frac{x}{\sqrt{x^2-1}}$	
III. $f(x) = \frac{x^{99}}{e^x}$		$\sqrt{x^2-1}$	

Continuity

Strive for continuous improvement, instead of perfection. - Kim Collins

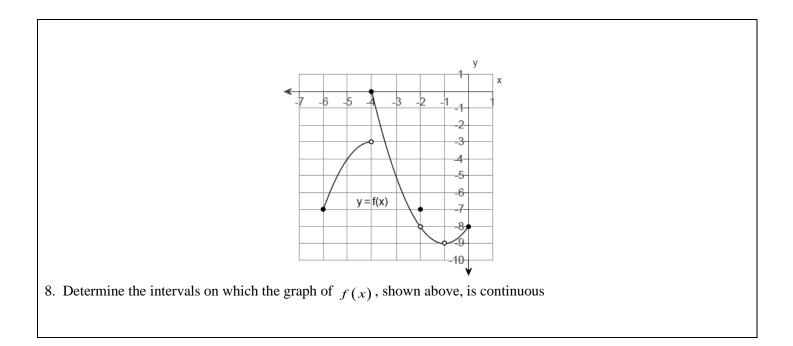
3-Part Definition of Continuity

1. Determine the *x*-values at which the function *f* below has discontinuities. For each value state which condition is violated from the 3-part definition of continuity.



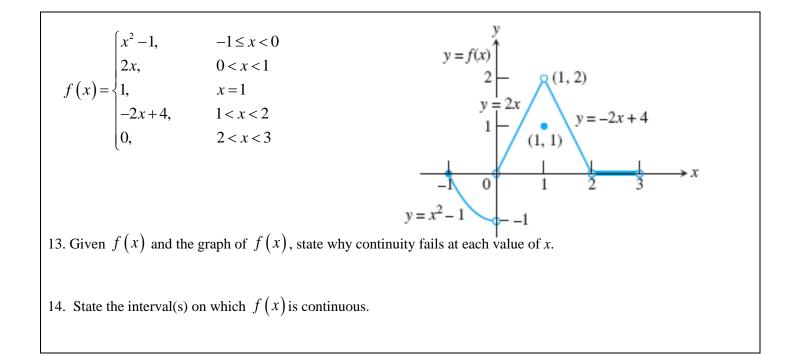
Show (THREE STEPS) that each of the following functions is either continuous or discontinuous at the given value of *x*.

2. $f(x) = x + 5$ at $x = 1$	3. $f(x) = x^2 + 2x - 1$ at $x = 0$
4. $f(x) = \frac{x^2 - 16}{x - 4}$ at $x = 4$	5. $f(x) = \frac{x^2 - 25}{x + 5}$ at $x = 5$
6. $f(x) = \frac{1}{x}$ at $x = 3$	7. $f(x) = \frac{3x-1}{2x+6}$ at $x = -3$



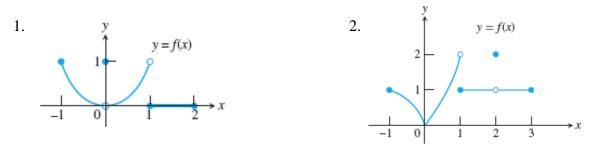
State the open interval(s) on which each function is continuous.

9. $f(x) = x^2 + 2$	$10. f(x) = \frac{1}{x}$
11. $f(x) = \frac{x^2 + 1}{x - 1}$	12. $f(x) = \frac{x^2 - 3x + 2}{x^2 + 4x - 5}$



For questions 1 & 2,

- a) Determine the x-coordinate of each discontinuity on the graph of f(x).
- b) Identify each discontinuity as either **removable** or **jump**.
- c) Evaluate the limit at each discontinuity.
- d) State the interval(s) on which f(x) is continuous.



For questions 3-5, answer the following:

- a) Determine the x-coordinates of any discontinuities on the graph of f(x).
- b) Identify the discontinuities as either **infinite** or **removable**.
- c) Evaluate the limit at each **removable** discontinuity.
- d) State the interval(s) on which f(x) is continuous.
- e) Write an extended function of g(x) that is continuous.

3.
$$f(x) = \frac{x-2}{x^2-5x+6}$$

4. $f(x) = \frac{x^2-4}{x+2}$
5. $f(x) = \frac{x^2+x-12}{x^2+6x+8}$

6. Find the value of <i>a</i> that makes $f(x) = \begin{cases} 2x^2 - 4, x < 2\\ ax + 3, x \ge 2 \end{cases}$ continuous on the entire interval.
7. Find the value of <i>a</i> that makes $f(x) = \begin{cases} ax^2 + 2, & x < 3 \\ 4x - 1, & x \ge 3 \end{cases}$ continuous on the entire interval.
8. Find the value of k that makes $f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2}, & x \neq 2\\ k, & x = 2 \end{cases}$ continuous on the entire interval.

Evaluate each limit

9. $\lim_{x \to \infty} \frac{x^{99}}{e^x}$	10. $\lim_{x \to \infty} \frac{e^x}{\ln x}$	11. $\lim_{x \to \infty} \frac{\ln x}{x^{99}}$	12. $\lim_{x \to \infty} \frac{x^{99}}{a^x}$
$x \to \infty e^x$	$x \to \infty \ln x$	$x \to \infty x^{99}$	$x \to -\infty e^x$

Each of the following has a removable discontinuity. Find an extended function, g(x), that removes the discontinuity.

1) $f(x) = \frac{x^2 - 5x + 6}{x - 3}$	2) $f(x) = \frac{x^2 - 5}{x - \sqrt{5}}$	3) $f(x) = \frac{x^3 + 8}{x + 2}$

4) Find each limit

a)

$$\lim_{x \to -3^{-}} \frac{-3x}{x+3}$$
 b) $\lim_{x \to -3^{+}} \frac{-3x}{x+3}$

5) Find the vertical asymptote on the graph of $f(x) = \frac{x^2 - 10x}{x+9}$. Describe the behavior of f(x) to the left and right of the vertical asymptote.

For problems 6-7,

- a) Determine the *x*-coordinate of the discontinuities on the graph of f(x). Identify the discontinuities as either infinite or removable.
- b) Use limits to describe the behavior of f(x) near any removable discontinuities.
- c) State the interval(s) on which f(x) is continuous.
- d) Identify any vertical asymptotes on the graph of f(x). Use limits to describe the behavior of f(x) near the vertical asymptote.
- e) Use limits to identify any horizontal asymptotes on the graph of f(x).
- f) Draw an accurate graph of f(x).

6)
$$f(x) = \frac{x^2 - 4}{x^2 + 3x + 2}$$

7) $f(x) = \frac{2x^2 - 5x + 3}{x^2 + 6x - 7}$

8) Sketch the graph of any function such that:

 $\lim_{x \to \infty} f(x) = -\infty$ f(1) = 3 $\lim_{x \to 1} f(x) = -2$ $\lim_{x \to \infty} f(x) = 5$

To live for results would be to sentence myself to continuous frustration. My only sure reward is in my actions and not from them. – Hugh Prather

	 1a) Explain why continuity fails at x=-1. 1b) What kind of discontinuity does f(x) have? 1c) On what open interval(s) is f(x) continuous?
2. 6^{-} 4^{-} 2^{-} -1^{-} -2^{-} -1^{-} -2^{-}	 2a) Explain why continuity fails at x = 2. 2b) What kind of discontinuity does f(x) have? 2c) On what open interval(s) is f(x) continuous?
3.	 3a) Explain why continuity fails at x=3. 3b) What kind of discontinuity does f(x) have at x=3? 3c) On what open interval(s) is f(x) continuous?
4. 4. 4^+ 3^- 2^- • 1^- $-5^-4^-3^-2^-1$ -1^- -3^- -3^- -4^+ -5^-	 4a) Explain why continuity fails at x=1. 4b) What kind of discontinuity does f(x) have? 4c) On what open interval(s) is f(x) continuous?

For problems	1-4, use the graph to te	st the function for continuity	at the indicated value of x.
	,		

Determine whether f(x) is continuous at the given value of x.

5)	$f(x) = \begin{cases} \sin \pi x, \\ x^2 + 3x - 9, \end{cases}$	$\begin{array}{c} x \le 2\\ x > 2 \end{array}, x = 2 \end{array}$	6) $f(x) = \begin{cases} -2x+3, \\ x^2, \end{cases}$	$\begin{array}{c} x < 1 \\ x \ge 1 \end{array}, x = 1 \end{array}$

Find the constant *a*, or the constants *a* and *b*, such that the function is continuous on the entire number line.

7) $f(x) = \begin{cases} x^3, & x \le 2\\ ax^2, & x > 2 \end{cases}$	8) $f(x) = \begin{cases} 4 - x^2, & x < -1 \\ ax^2 - 1, & x \ge -1 \end{cases}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\int x^2 + 3x, \qquad x < 2$
9) $f(x) = \begin{cases} 2, & x \le -1 \\ ax+b, & -1 < x < 3 \\ -2, & x \ge 3 \end{cases}$	10) $f(x) = \begin{cases} x^2 + 3x, & x < 2 \\ a, & x = 2 \\ 7x - 4, & x > 2 \end{cases}$

111 1-3	3, verify that the Intermediate Value	ue Theorem guarantees t	hat there is a	zero in the i	nterval for t	he given function
l) <i>f</i>	$f(x) = \frac{1}{16}x^4 - x^3 + 3$; [1,2]	2) $f(x) = x^3 + 3x - 2$	2; [-2,1]	3) f	$(x) = x^2 - x \cdot$	$-\cos x$; $[0,\pi]$
	5, verify that the Intermediate Value theorem. No calculator is permit		e indicated in	terval and f	ind the value	e of <i>c</i> guaranteed
4) <i>f</i>	$f(x) = x^2 + x - 1$	5) $f(x) = x^2 - 6x + 8$	8	6) f	$(x) = x^3 - x^2$	$x^{2} + x - 2$
j	f(c) = 11 in [0,5]	f(c) = 5 in [0,3]		f	(c) = 4 in $[0]$	9,3]
,	Given selected values of the con interval $[0,30]$? Explain your re		hat is the few	est number	of times $h($	(x) = 43 in the
	x 0	5 10	15	20	25	30
	h(x) 100	40 40	110	30	10	50
	decreasing on $0 \le t \le 8$. Selected	values of $\mathcal{M}(t)$ are shown	in the table be	low.		
	t (hours)	0113401190	3 950 er is pumped i	7-	6 40 is the same	8 700 e as the rate at
)	t (hours) $R(t)$ (liters/hour)1For $0 \le t \le 8$, is there a time t when the time t when time t whe	0113401190en the rate at which watee tank? Explain your reate how continuity is destruct	3 950 er is pumped i isoning.	nto the tank c .	40	700
9	t (hours) $R(t)$ (liters/hour)The forth of the state is removed from t	0113401190en the rate at which watee tank? Explain your rea	3 950 er is pumped i isoning.	nto the tank	40	700

1	$\lim_{x \to \frac{\pi}{2}} \frac{1 + \sin x}{1 - \cos x}$	2	$\lim_{x \to \infty} \frac{\cos 2x}{x^2}$
3	$\lim_{x \to \infty} \left(\frac{6x^3 - 5x}{x^2 + 4x^3} \right)$	4	$\lim_{x \to \infty} \frac{x^2 + x^4}{x^2 + x^6}$
5	$\lim_{x \to -\infty} \frac{8x^3 - 5x}{x^2 - 3x}$	6	$\lim_{x \to 4^-} \frac{5}{x - 4}$
7	$\lim_{x \to 2} \frac{4x^3 - 32}{5x^2 - 20}$	8	$\lim_{x \to -\infty} \frac{1}{1 + e^x}$
9	$\lim_{x \to -\infty} \frac{e^x}{4x^3 - 3}$	10	$\lim_{x \to 0} \frac{\sin 3x}{7x}$
11	Sketch a graph of a function such that: $f(3) = 2$ $\lim_{x \to 3} f(x) = -1$ $\lim_{x \to -2^-} f(x) = -\infty$ $\lim_{x \to -2^+} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = 5$ $\lim_{x \to \infty} f(x) = -\infty$	12	Find the value of a that will make $g(x)$ continuous. $g(x) = \begin{cases} ax+3, & x \le 1\\ (x+a)^2 - 10, & x > 1 \end{cases}$
•	$13 \lim_{x \to 1^+} f(x) \qquad 14 \lim_{x \to 1^-} f(x)$	x)	15 $\lim_{x \to 1} f(x)$ 16 $\lim_{x \to -1} f(x)$ 17 $\lim_{x \to 2} f(x)$
18	Evaluate $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{for } f(x) = 2x^2 - 7x$		
19	If $f(x) = \begin{cases} 2x-1, & x \le 1 \\ -3x+1, & x > 1 \end{cases}$, determine if $f(x)$ continues of $f(x)$ and $f(x) = \begin{cases} 2x-1, & x \le 1 \\ -3x+1, & x > 1 \end{cases}$, determine if $f(x) = \begin{cases} 2x-1, & x \le 1 \\ -3x+1, & x > 1 \end{cases}$, determine if $f(x) = \begin{cases} 2x-1, & x \le 1 \\ -3x+1, & x > 1 \end{cases}$, determine if $f(x) = \begin{cases} 2x-1, & x \le 1 \\ -3x+1, & x > 1 \end{cases}$.	nuou	s at $x = 1$.
20	If $f(x) = \begin{cases} \frac{x^2 + 6x + 8}{x + 2}, & x \neq -2\\ 2, & x = -2 \end{cases}$, determine if f	(<i>x</i>)	is continuous at $x = -2$.
21	Find an extended function of $f(x) = \frac{x^2 - 16}{x - 4}$ that is	is cor	itinuous.

Answers

a) -10	b) 7	c) 3	d) $-\frac{1}{c}$	
e) 24	f) $\frac{5}{9}$	g) $-\frac{2}{5}$	h) 4	
)				
a) 3 d) 8	b) 2 e) $\frac{1}{2}$		c) 0 f) -2	
3)				
a) 10	b) 0	c) 25	d) -5	

l) -7	2) 5	3) $-\sqrt{2}$	4) $-\frac{1}{2}$	5) 1	6) 1	7) 0
8) DNE	9) 3	$10) \frac{2}{5}$	11) DNE	12) a) 3 b) 3	13) a) 15 b) 3	
				c) 3	c) DNE	
				d) undefined	d) 3	

2) $\frac{6}{7}$	3) $\frac{20}{3}$
5) 4	6) 1
8) $\frac{1}{8}$	9) DNE
11) 20	12) 18
14) -36	15) <i>a</i> =-4
	5) 4 8) $\frac{1}{8}$ 11) 20

Worksheet 12			
Quiz Review			
1) 2; 2; 2; 1	2) 2; 4; DNE; 4	3) 11	4) 3
5) $\frac{3}{4}$	6) 2	7) -1	8) $\frac{7}{2}$
Limits at Infinity			
1) -∞	2) ∞	3) 8	4) 9
5) 1	6) 1	7) $\sqrt{2}$	8) $-\sqrt{2}$
9) 0	10) _∞	11) 0	12) -1
13) I and III	14)		
	a) $y = 5$		
	b) $y = -3$		
	c) $y = 1; y = -1$		

Worksheet 18								
1.2	2. 0	3. $\frac{3}{2}$	4. 0	5. DNE	6. –∞	7. $\frac{12}{5}$ 142		
8. 1	9. 0	10. $\frac{3}{7}$	11. Answers will vary	124, 3	13. 1	142		
15. DNE	16. 2	17. 1	18. $4x - 7$					
19. I. $f(1) = 1$ II. $\begin{bmatrix} \lim_{x \to 1^+} f(x) = 1 \neq \lim_{x \to 1^-} f(x) = -2 \end{bmatrix}$ $\lim_{x \to 1} \text{DNE}$ $\therefore f(x) \text{ is not continuous at } x = 1$		I. $f(-2) = 2$ II. $\lim_{x \to -2} \frac{x^2 + 6x + 1}{x + 2}$ III. $f(-2) = \lim_{x \to -2} \frac{1}{x + 2}$	20. I. $f(-2) = 2$ II. $\lim_{x \to -2} \frac{x^2 + 6x + 8}{x + 2} = \lim_{x \to -2} (x + 4) = 2$ III. $f(-2) = \lim_{x \to -2} f(x) = 2$ $\therefore f(x)$ is continuous at $x = -2$					
21. $f(x) \text{ is not continuous at } x = 4$ $\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)} = \lim_{x \to 4} (x + 4)$ $g(x) = \begin{cases} \frac{x^2 - 16}{x - 4}, & x \neq 4\\ 8, & x = 4 \end{cases}$								